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Double photoionization of helium atoms at 1 eV above threshold
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Abstract. An ab initio calculation of triple differential cross-section for double photoionization of helium
atoms are presented for a very low energy of just 1 eV above threshold in the equal energy sharing
kinematics. We have used hyperspherical partial wave theory together with a Numerov difference scheme
in place of other schemes used in our earlier works. The results are in excellent qualitative agreement with
the measurements of Dörner et al. [Phys. Rev. A 57, 1074 (1998)].

PACS. 32.80.Fb Photoionization of atoms and ions

1 Introduction

For double photoionization of helium atoms very close
to threshold, absolute measured cross-section results have
been reported by Dörner et al. [1] at incident photon ener-
gies of 1 eV and 6 eV above threshold. However, to the best
of our knowledge, for such low energies theoretical results
of successful theories like hyperspherical R-matrix theory
with semiclassical outgoing waves (HRM-SOW) [2], the
time depending close coupling (TDCC) theory [4] and the
convergent close coupling (CCC) theory [5] are not yet
known.

Maulbetsch et al. [6] calculated the double photoion-
ization triple differential cross-section (TDCS) at incident
photon energies 0.6 eV, 1 eV and 20 eV above threshold
for different energy sharing and linearly polarized light
(with different degrees of polarization characterized by the
Stokes parameter S1) and obtained good agreement with
the experiments. They used two different methods to com-
pute the photoionization TDCS which, however, did not
seem to agree with each other with respect to absolute val-
ues even though they obtained good qualitative agreement
with the experiments. For low incident photon energies,
there are also the theoretical analysis of Huetz et al. [7]
and Wannier description of Feagin [8], which need fitting
with experimental results. Calculations following Huetz
et al. need a Gaussian fitting of a correlation function and
in the Wannier analysis certain parametrization is needed.
These situations encouraged us to undertake the present
calculation in the hyperspherical partial wave (HPW) the-
ory [9–11] for the present problem. The HPW theory has
already been applied successfully for the double photoion-
ization of helium at 20eV [9], 20 eV and 40 eV [10] and
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6 eV [11] excess energies. Here we undertake HPW calcu-
lation at 1 eV excess energy which needs special consider-
ations.

2 Hyperspherical partial wave theory

Hyperspherical partial wave theory for the calculation of
three-particle (nucleus and two electrons) scattering state
has been described in detail in the context of electron-
hydrogen ionization problems in [12–14] and outlined in
several other publications, particularly in the context of
double photoionization of helium atom in [9]. We there-
fore present here only the essentials. In the double pho-
toionization calculation the scattering cross-sections are
calculated from the T -matrix element given by

Tfi = 〈Ψ (−)
f |V |Φi〉, (1)

where Ψ
(−)
f is the final three-particle scattering state with

incoming boundary condition, Φi is the initial ground state
wave function and V is the interaction term which, in the
velocity gauge, is given by

V = ε · (∇1 + ∇2). (2)

The final scattering state, which is singlet with odd parity
and total angular momentum L = 1 (1Po symmetry), is
expanded as

Ψ
(−)
f (R, ω) =

√
2
π

∑
N

fN (R)
ρ

5
2

φN (ω), (3)

where ρ = PR and φN are hyperspherical harmonics
which are a symmetrized product of normalized Jacobi
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polynomials P l1l2
n and coupled angular momentum eigen-

functions YLM
l1l2

[12]. The index N denotes the triplet
(n, l1, l2), l1, l2 being the angular momenta of the outgoing
electrons, n is the order of the Jacobi polynomial in the
hyperspherical harmonics φN (ω) and M is the projection
of the total angular momentum L. Denoting the coordi-
nates of the two outgoing electrons by r1 = (r1, θ1, φ1) and
r2 = (r2, θ2, φ2), the hyperspherical coordinates are (R, ω)
where the hyperradius R is defined by R =

√
r2
1 + r2

2
and ω denotes the collection of five angular coordinates
(α, θ1, φ1, θ2, φ2), α = arctan (r2/r1) being the hy-
perspherical angle. The corresponding quantities for the
two outgoing electron momenta p1 = (p1, θ1, φ1) and
p2 = (p2, θ2, φ2) are (P, ω0) with P =

√
(p2

1 + p2
2), ω0 =

(α0, θ1, φ1, θ2, φ2), α0 = arctan (p2/p1).
The radial wave functions fN then satisfy a single in-

finite coupled set of differential equations [9][
d2

dR2
+ P 2 − νN (νN + 1)

R2

]
fN +

∑
N ′

2P αNN ′

R
fN ′ = 0,

(4)
where αNN ′ are the matrix elements of the full three-body
interaction potential in the basis φN (ω) and νN = 2n +
l1 + l2 + 3/2.

3 Calculations

In this calculation, the number of functions and the cor-
responding number of equations in equation (4) are trun-
cated to Nmx numbers. Each N identifies a possible chan-
nel and here we present results for 100 and 150 channels.
The set of equations (4) have to be solved accurately over
a domain [0, R∞], where the point R∞ is in the far asymp-
totic domain. As in our earlier calculations we divide the
interval [0, R∞] into two subintervals [0, ∆] and (∆, R∞].
In (∆, R∞) we solve the equations by Taylor’s expansion
method. We also need solutions at R∞ and beyond and
this is done by suitable expansion of each fN in inverse
power of ρ with suitable sine and cosine factors as in our
earlier calculations [9].

Solution over [0, ∆] is the most difficult part. Here we
use Numerov difference scheme with three, five and seven-
point schemes respectively for one-point, two-point and
three or more points away from the boundaries R = 0
and R = ∆. These schemes appear to be more stable and
somewhat more accurate than the scheme we used earlier
[5]. The Numerov three-point, five-point and seven-point
difference formulas we have used here are respectively the
following:

fN (Rk−1) − 2fN (Rk) + fN(Rk+1) =

h2

12
[
f”

N (Rk−1) + 10f”
N(Rk) + f”

N (Rk+1)
]
, (5)

fN (Rk−2) − 16fN(Rk−1) + 30fN(Rk) − 16fN(Rk+1)

+ fN(Rk+2) =
2h2

15
[f”

N (Rk−2) − 4f”
N(Rk−1) − 84f”

N(Rk)

− 4f”
N(Rk+1) + f”

N(Rk+2)], (6)
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Fig. 1. (Color online) TDCS against scattering angle θb (hor-
izontal axis) for equal energy sharing double photo ionization
of the helium atom at 1 eV excess energy, averaged over [45◦,
65◦] for θa and over [0◦, 20◦] for φab. Theory: thick curve - 150
channels, thin curve - 100 channels; dashed curve - fourth order
Wannier calculation with parameterization, dash dotted curve
- fit with a Gaussian correlation. Experiment: Dörner et al. [1].

and

2fN(Rk−3) − 27fN(Rk−2) + 270fN(Rk−1) − 490fN(Rk)
+ 270fN(Rk+1) − 27fN(Rk+2) + 2fN(Rk+3) =

69h2

140
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+
8860
23
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− f”
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]
. (7)

For our present calculation in the equal energy sharing
kinematics, we need at least a 100 channel calculation and
a choice of R∞ of about 2000 au for approximate conver-
gence. Our results overestimate the experiment, which are
in an absolute scale, nearly by a factor of two. We also
carried out calculations for 150 channels and these are in
close agreement with the 100 channel results as can be seen
in Figure 1. Since at the low energy considered here fewer
partial waves are expected to contribute, we conclude that
convergence has probably been reached with respect to the
number of channels. However, convergence in TDCS not
only depends on the number of channels but also on the
parameter R∞ as shown by Malegat et al. [3]. We therefore
anticipate that the higher value of our calculated TDCS is
perhaps due lack of convergence with respect to this pa-
rameter. For full convergence one would need to increase
this parameter to thousands of atomic units. Such calcu-
lations would require much more sophisticated and stable
numerical techniques for propagating the radial wavefunc-
tion and better computational facilities than we can afford
at present and hence are not attempted. Also for smooth
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convergence, we had to cut short a few large eigenvalues
of the charge matrix (αNN ′).

The triple differential cross-section (TDCS)
(actually a four-fold differential cross-section
d4σ/d cos θad cos θbdφabdEa) thus calculated, has been
averaged for θa, the polar angle measured from photon
polarization direction over the range (40◦, 65◦) and for
φab, the azimuthal angular separation, over (0◦, 20◦). In
averaging for θa and φab we made calculations at 2.5◦
intervals. We thus calculated altogether 11 × 9 = 99 sets
of results and averaged over these. We also observed
that for 100 and 150 channel calculations, the single
differential cross-sections are about 50% higher than the
experiments. Accordingly we multiplied our TDCS values
by a factor 0.60 to get a fit with the experiments.

4 Results and discussion

We present our results in Figure 1. The absolute exper-
imental results presented in Figure 1 are that of Dörner
et al. [1] and correspond to linearly polarized light with
Stokes parameter S1 = 0.99± 0.01. For this reason, we do
not compare our results with those of Maulbetsch et al. [6]
which are for a different value of S1. In absence of theo-
retical results of other ab initio theories, we compare our
results with the only available semi-empirical calculations
presented in [1] following Huetz et al. [7] and Feagin [8]. In
Figure 1 there is good overall agreement between our re-
sults and those of the experiment. The peak around −90◦
is well represented by our theory as well as by the semi-
empirical theories of Huetz et al. [7] and of Feagin [8]. The
peak around −25◦ is also well represented in our calcula-
tion though not by the semi-empirical calculations. There
is also a third peak at about −160◦ in our theoretical re-
sults as well as in semi-empirical calculations. Although
such peaks exist at 6 eV and 20 eV excess energies in the
experimental results, here no such peak in the experimen-
tal results developed. As for the other side of the plane
of scattering our results agree well with the experimen-
tal results. It has been pointed out that the shape of the
photoionization TDCS is governed by selection rules [15]
(see also the excellent review article [16] by Briggs and
Schmidt). For equal energy sharing kinematics, the 1P◦
character of the final state suppresses ejection of both elec-
trons in the opposite direction. This is manifested by the
deep minimum near −50◦ in Figure 1.

5 Conclusion

We conclude that the results of our present calculation are
in excellent qualitative agreement with the experiments
and with other available theories at 1 eV excess energy
for the equal energy sharing case. The third peak near
−160◦ predicted in our results and also in those of Huetz
et al. and Feagin but not in the experiment may be worth
noting. For fully converged results, perhaps a larger size
calculation with a more accurate scheme for solving the
relevant coupled set of radial equations may be needed.
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